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Chapter 4:  Fundamentals of Digital Audio1

 
4.1.  Sound Waves 
 In their very first introductions to physical science, students are taught that “sound 
is a wave.”  But what does this really mean, and what repercussions does this have in the 
way sound is represented in a computer?  If you understand how sound is produced and 
transmitted, it will be easier for you to understand how it is digitally represented and 
manipulated, so let’s take a closer look. 
 

 
Figure 4.1.  Pure Audio Tone No Overtones, Represented as a Wave Form 

 
 If you try to picture sound as a wave, you might picture a “bump” of air 
molecules moving across space.  You might imagine the molecules moving up and down 
they as the sound wave makes its way to your ear.  It makes a charming picture, but in 
fact, this isn’t what a sound wave is at all. 
 Let’s start at the beginning.  First, sound is a mechanical wave, which means that 
it results from the motion of particles through a transmission medium – for example, in 
the case of sound, the motion of molecules in air.  Because sound is a mechanical wave, it 
has to have something to move through; sound cannot be transmitted through a vacuum.  
 

 
Figure 4.2.  Changing Air Pressure Caused by Vibration of Air Molecules 

 
The movement associated with a sound wave is initiated by a vibration.  Imagine 

one of the strings inside a piano vibrating after one of the piano’s soft hammers hits it.  
The air molecules next to the string are set in motion, radiating energy out from the 
vibrating string.  For simplicity, let’s just picture a single “wave” moving from left to 
right.  As the string vibrates to the right, the molecules closest to the string are pushed to 
the right, bumping into the molecules next to them, which in a chain reaction bump into 
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the molecules next to them, and so forth.  When a group of molecules are pressed closer 
to their neighbors, air pressure rises.  When the string moves back to the left, the 
molecules next to the string have space to spread out and move to the left as well, so the 
pressure between these molecules and the molecules to their right is reduced.  This 
periodic changing of air pressure – high to low, high to low, etc. – radiates out from the 
string from left to right.  (See Figure 4.2.) 

So you see, a sound wave is, physically, not a bump of air moving across space.  
If you can visualize a sound wave as we just described it above, you can see that the 
motion of the air molecules is back and forth from left to right, the same direction in 
which the wave is radiating out from the string.  A wave of this type is called a 
longitudinal wave, which is defined as a wave in which the motion of individual particles 
is in a direction parallel to the direction in which energy is being transported.  Sound is a 
longitudinal mechanical wave. 

Then why do we draw sound waves as we do, like the one in Figure 4.1? 
The sound wave in the figure is a graphical and mathematical abstraction of the physical 
phenomenon of sound.  It represents the periodic change of air pressure.  First the 
pressure increases as molecules are pushed closer together, shown by the upward bump in 
the graph.  Then the pressure decreases as the molecules move apart, shown by the 
downward bump.  These changes happen over time, so the x-axis in the graph represents 
time, while the y-axis represents air pressure.   
 A little terminology will make it easier for us to talk about sound waves in their 
graphical representation.  A wave is said to be periodic if it repeats a pattern over time.  
The pattern that is repeated constitutes one cycle of the wave.  A wavelength is the length 
(in distance) of one complete cycle.  The frequency of a wave is the number of times a 
cycle repeats per unit time (which in the case of sound corresponds to the rate at which 
the air molecules are vibrating).  Frequency is measured in cycles per second, or herz 
(abbreviated Hz).  One cycle per second is one herz.  One thousands cycles per second 
make 1000 herz, or one kilohertz (KHz).  One million cycles per second is equal to 1000 
KHz, which is one megahertz (MHz).  The period of a wave is the amount of time it takes 
for one cycle to complete.    Period and frequency are reciprocals of each other.  That is,  

frequencyperiod /1=  
periodfrequency /1=  

The height of a wave is called its amplitude. 
 A graphical representation of sound in the form of a wave tells us something 
about the sound without our having to hear it.  If the wave is completely regular like the 
one in Figure 4.1, then the sound is a pure tone, like a single musical note with no 
overtones.    The amplitude of a wave corresponds to how loud the sound is; the larger 
the amplitude, the louder the sound.  The frequency of a wave corresponds to the pitch of 
the sound; the higher the frequency, the higher-pitched the sound. 

When sound is recorded, the changes in air pressure are translated to changes in 
voltage.  A microphone picks up the changes in air pressure and records them as changes 
in voltage on an electrical wire.  In the days of analog audio – 8-track tapes and vinyl 
record albums, for example – these voltage changes were captured in the form of changes 
in magnetic strength on the tape or changes in the depth of a groove on the vinyl record.   
A tape or record player then could play back the sound by reading the amplitude values 
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imprinted on the tape or record, translating them again to voltages, and sending them to a 
speaker to be converted back to air vibrations. 

When changes of air pressure reach the human ear in this wave-like pattern, they 
are detected by tiny hairs in the inner ear, translated into nerve impulses, sent to the brain, 
and in a miraculous process that is part of the human sensory system, interpreted as sound. 

 
4.2.  Adding and Decomposing Sound Waves  
 Figure 4.1 shows a simple wave form corresponding to a pure musical tone with 
no overtones.  If you remember your high school trigonometry, you may have noticed 
that the shape of this wave is the same as the graph of a sine function.  Few sounds in 
nature are this pure in form.   For example, Figure 4.3 shows part of the wave produced 
by the spoken word “Hi!”   It is not as regular as the pure tone of Figure 4.1, but it can be 
shown that it is, in fact, the sum of waves with a completely regular shape like the one in 
4.1.  (See Section 4.3 of the CS Chapter 4.)   
 

 
Figure 4.3.  Part of the Spoken Word “Hi” Represented as a Wave Form 

 
We can illustrate this with a simple example.  Let’s use musical tones that sound 

good together.  Figures 4.4 a, b, and c shows the wave forms for three pure tones, the 
notes middle C, E, and G on the piano.  Figure 4.4 d shows the wave form for notes C 
and E played simultaneously.  Figure 4.4 e shows C, E, and G played simultaneously.   

The importance of this fact is that, once we have represented a sound wave 
digitally, sound processing programs make it possible to analyze the wave form, filter out 
unwanted frequencies, and edit the sound for better quality or creative effects.  Just as 
simple waves can be “added up,” as shown below, a complex wave can be decomposed 
into its simple component parts.  In fact, it can be proven that any periodic wave form, no 
matter how irregular it may appear, can be decomposed into a sum of pure sine and 
cosine waves. One of the mathematical methods to accomplish this decomposition is 
called the Fourier transform.  In a digital sound processing program, you’ll encounter the 
Fourier transform as the basis for filters that break down a sound and pull out unwanted 
frequencies, such as low-pitched noise.  Understanding how wave forms are added and 
decomposed will help you understand the tools available to you in audio processing. 

One last note about sound waves before we move on to digitization:  You may 
have noticed that in our graphs of sound waves, we haven’t included any units along the 
x- and y-axes.  Time runs along the x-axis, and the units can sometimes be inferred from 
the example.  In Figure 4.5a, for examples, which shows a tone that has a frequency of 
400 Hz, ten complete cycles would cover 10/400th of a second.  Generally, however, you 
don’t need to consider either the time or the amplitude units in order to understand the 
example being presented.  On the y-axis, representing amplitude, the unit of measurement 
could be decibels, a common measurement for the loudness of sound.  It could also be 
voltage, since changes in voltage can be used by electronic devices to communicate 
changes in air pressure and thus the amplitude of sound.   In these examples, the unit of 
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measurement is not important; instead, we are focusing on the relative sizes of values on 
the y-axis and the precision with which they can be measured.  (See Section 4.2 of CS 
Chapter 4 for a more precise definition of amplitude measured in decibels.) 

 

 
Figure 4.4a.  The Musical Note C 

 
Figure 4.4b.  The Musical Note E 

 
Figure 4.4c.  The Musical Note G 

 
Figure 4.4d.  The Notes C and E Played Together 

 
Figure 4.4e.  The Notes C, E, and G Played Together 
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4.3.  Digitizing Sound 

We have seen that a wave form is a convenient way to describe sound, but it is an 
analog representation, not a digital one.  A continuous, curved line like the wave in 
Figure 4.1 is in analog form in that, going horizontally along the x-axis, the line spans an 
infinite number of points in time.  For any two points we might select on the graph, there 
is always another point in between.  To reduce this infinite number of points to a finite 
number that a computer can handle, we must choose a number of equally-spaced points 
in time at which to sample the amplitude of the wave.  Then each sample has to be 
quantized – that is, it must be represented in a fixed number of bits.  Just like digitizing 
analog image data, digitizing analog audio data requires the two steps of sampling and 
quantization.  In the domain of digital audio, this encoding process is often referred to as 
pulse-code-modulation (PCM). 

The device that accomplishes the digitization process is called an analog-to-
digital converter (ADC).  Most up-to-date computers are equipped with sound cards that 
have an ADC to create digital audio.  The microphone in the computer captures the sound 
and communicates it to the sound card, the sound card does the analog to digital 
conversion, and the data is stored in memory and/or on the hard disk.   Let’s look more 
closely at this digitization process, and consider the implications of converting from 
analog to digital form. 

 
4.3.1.  Sampling 
 In order to take samples of a sound wave, we need to choose a sampling rate.  The 
choice of sampling rate will have an effect on how closely the digitized audio file 
matches the original sound wave.  Like frequency, sampling rate is measured in Hz.  A 
sampling rate of 44,100 samples per second is referred to as a sampling rate of 44,100 Hz, 
or 44.1 KHz.  The question we want to explore is this:  If you want to digitize a sound 
wave that has frequency of n Hz, what sampling rate is appropriate?  The answer is that 
the sampling rate must be more than Hz, as we’ll demonstrate below. n*2

Figure 4.5a shows an analog sound wave with a frequency of 400 Hz.  What 
happens if we try to digitize this wave by sampling it at a rate of 400 Hz – i.e., 400 
samples per second?  This would mean that we take just one sample for each cycle of the 
wave, at regularly-spaced intervals.  Figure 4.5b shows the result.  If we try to recreate 
the wave by joining the sample points, the wave we get is just a flat line.   

In Figure 4.5c we try again, this time using a sampling rate of 600 Hz – i.e., 600 
samples per second.  That’s two samples for every three cycles.  Again, we aren’t able to 
approximate the wave with so few samples.  Even if we “round out” the wave that we get 
by joining the sample points, it isn’t much like the original wave. 

What happens if we try sampling a 400 Hz wave at 800 Hz?  When we sample at 
exactly twice the frequency of the wave, we can reconstruct the original wave accurately 
if the samples are taken at the minimum and maximum amplitudes of the wave.  But if 
we sample anywhere else, as in Figure 4.5d, we get back a wave with the right frequency 
but a lower amplitude.  If we take the samples each time the wave crosses the x-axis, it’s 
even worse –  a flat wave of amplitude 0.   
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Sampling a 400 Hz wave at 1200 Hz, as in Figure 4.5e, definitely gives us enough 
information to reconstruct the wave – three samples every cycle.  We have the correct 
amplitude and frequency, and we only need to round the wave out to get back the original. 
 

 
Figure 4.5a.  A 400 Hz Wave Sampled at 44.1 MHz 

 
 

 
Figure 4.5b.  A 400 Hz Wave Sampled at 400 Hz Becomes a Flat Wave 

 
 

 
Figure 4.5c.  A 400 Hz Wave Sampled at 600 Hz 

 
 

 
 

Figure 4.5d.  A 400 Hz Wave Sampled at 800 Hz 
 

 
Figure 4.5e.  A 400 Hz Wave Sampled at 1200 Hz 

 
 A Swedish scientist by the name of Nyquist was the first to observe formally what 
we’ve demonstrated here:  To represent an analog periodic wave in digital form with the 
assurance that you can recreate it faithfully, you need to sample it more than twice in 
each cycle.  To say this another way, the sampling rate must greater than twice the 
frequency of the wave, which is called the Nyquist rate.  If the wave is of a complex form 
like the one shown in Figure 4.3, then the sampling rate must be greater than the 
frequency of the highest-frequency component.  Sampling at a rate that is anything less 
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than the Nyquist rate results in sound aliasing – that is, a frequency which “masquerades” 
as another because it is converted to digital form with a sampling rate that is not the same 
as the original.   

We have looked at this in the case of a pure wave, but we can generalize the 
statement to more complex wave forms, which are sums of pure periodic waves.  By the 
Nyquist theorem, if the highest frequency component of the sound being digitized is n Hz, 
then the sampling rate must be greater than Hz.  The practical application of this is 
that when you record sound, you need to choose a sampling rate that is greater than twice 
the highest frequency that will be heard in the sound being recorded.  For speech, 8000 
samples per second generally suffices; for CD quality audio, 44,100 samples per second 
is the standard.  If the sampling rate is too low, either you will have to put up with the 
“noise” inserted by aliased sound wave components, unless your sound editing software 
filters out the too-high frequency components before sampling.  

n*2

 
4.3.2.  Quantization 
 Quantization is the second step in analog-to-digital conversion.  Once a sound 
wave has been sampled, each sample must be represented in a fixed number of bits.  How 
do we know the proper number of bits to be used in each sample? 

As explained in Primer Chapter One, the numbers that can be represented by n 
bits range in magnitude from 0 to 12 −n , giving us  different values. For example, with 
three bits we can represent  values; with eight bits we can represent  
values; and with 16 bits we can represent values.   

n2
823 = 25628 =

536,65216 =
 Each sample of a sound wave has to be encoded in a fixed number of bits.  The 
number of bits used in each sample is called the sound file’s bit depth.  (The term 
resolution is used synonymously.)  Let’s say we tell our sound processing program that 
we want to use 3-bit sound samples.  (This isn’t a realistic example.  The lowest bit-depth 
that is generally used for audio is eight bits per sample, but we want to keep our drawings 
simple.)  A bit-depth of three bits would mean that the program would be able to 
represent only eight different amplitude levels.  That’s like slicing the y-axis of a wave 
graph into eight equal segments, as shown in Figure 4.6.  Each horizontal line in the 
figure represents one of the eight values that can be used to quantize the samples.  For 
each sample, the amplitude value has to be rounded to the closest of these lines.  This is 
shown for a number of discrete sample points in the graph.  The dark blue squares are the 
sample points.  The red square above or below each sample point is the value to which 
the point would be rounded when it is quantized. 
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Figure 4.6.  Quantization Error 
 

 You can see that quantization results in a loss of precision.  Even if we smooth 
out the wave, we don’t get back exactly the shape of the analog wave that captured the 
original sound.  This loss of fidelity to the original that results from quantization error is 
called distortion.   

The amount of distortion (also called quantization noise) can be pictured as 
another new component inserted into the original waveform.  In Figure 4.7, the original 
waveform is shown in shadow, the quantized wave is in red, and the quantization error 
introduced is shown in green.  Note that the original wave minus the error wave is equal 
to the quantized wave.  This means that the quantization error introduces a low amplitude 
noise as another component added to the original waveform, which comes out sounding 
like a low amplitude hiss.  The lower the amplitude of the original audio, the more 
distracting the noise because the amount of noise is large relative to the true sound.   
 

 
Figure 4.7.  Original sound wave (in shadow),  

quantized wave (in red), and error wave (in green) 
  

The point here is that the bit depth used for a sound file – the number of bits used 
for each sample – must be large enough for the audio quality desired.  Some applications 
require more fidelity to the original sound source than others.  For example, a digital 
recording of a symphony orchestra ought to sound as much like the live performance as 
possible, so a large bit depth is used – say 16 bits in each of two stereo channels.  For 
telephone transmissions, on the other hand, it is important only that the voice be 
recognizable and understandable, so eight bits in a single channel is sufficient.   

If a low bit depth is necessary but it introduces an unacceptable amount of 
distortion, a sound editing program can dither the sound file.  Dithering is a process that 
removes some of the distortion caused by low bit depth by adding random noise to the 
audio file.  The result is that instead of a distorted sound (like clicks or breaks), the audio 
file may have a little background hiss, but this noise is often preferable to distortion and 
closer to the original sound than without dithering.  If you have to save an audio file at a 
lower bit depth than the original version, you should try the dithering option to see if the 
resulting quality is better. 
 
4.3.3.  Common Sampling Rates and Bit Depths 
 So why do you need to know about sampling rate and bit depth?  First of all, any 
time you create a digital sound file, you’ll be asked to choose a sampling rate and bit 
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depth, and you’ll have to select between stereo and mono.  How do you know what to 
select? 
 The Nyquist theorem tells us that the sampling rate must be more than twice the 
frequency of the highest frequency component in the sound we want to digitize.  The 
highest frequency that humans are capable of hearing is 20,000 Hz (i.e., 20 KHz).  
(That’s a high upper limit.  Most of us can’t hear frequencies that high, and our ability to 
detect high frequency sounds diminishes as we age.)  The standard sampling rate for 
audio CDs is 44.1 KHz.  This is more than twice the frequency of the highest pitched 
tone humans are able to hear, so that’s good enough.  CD-quality digital audio uses 16 bit 
samples, and it is produced in stereo – two channels, that is. So CD-quality digital audio 
consists of two 16-bit samples taken 44,100 times for every second of sound.  If you want 
to record music that is of CD-quality, you should choose a sampling rate of 44,100 KHz 
and a resolution of 16 bits in stereo. 
 If you’re only recording the human voice (speaking), then you may not need the 
high fidelity of CD-quality sound.  The highest frequency reached by the human voice is 
about 5 KHz, so a sampling rate of 10 KHz would be sufficient.  A resolution of eight 
bits per sample and a sampling rate of 8 KHz may be enough (telephone quality digital 
audio) if you don’t care about exact fidelity to the tones of the voice.   
 Table 4.2 lists common formats in terms of sampling rate, bit depth, and file size 
for 1 minute of digital audio. 
 
4.4.  Amplitude and Dynamic Range 

The amplitude of a sound wave is an indication of the loudness of the sound, but 
the relationship between the two is not linear.  In other words, one sound may have n 
times the amplitude of another, but this does not mean that it is perceived as n times 
louder to the human ear.  For example, a voice at normal conversation level could be 100 
times the air pressure amplitude of a soft whisper, but to human perception it seems only 
about 16 times louder.  If we used units related to the changes in air pressure to measure 
sound, the differences in numbers wouldn’t match the differences in the way we perceive 
sounds.   Decibels are scaled to account for the non-linear nature of human sound 
perception.  Table 4.1 gives the decibels of some common sounds (abbreviated dB).  

  
Sound Decibels (dB) 
Threshold of hearing 0 
Rustling leaves 20 
Conversation 60 
Jack hammer 100 (or more!) 
Threshold of pain 140 
Damage to eardrum 160 

Table 4.1.  Magnitude of common sounds measured in decibels 
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Amplitude in decibels 

 

 
Amplitude in sample values 

Figure 4.8.  Amplitude measured in decibels an samples values. 
 

Decibels are an appropriate unit for describing the range of sound amplitudes, or 
dynamic range, of a digital audio file.  In practice, the term dynamic range is used in two 
different contexts.  A piece of music or an audio clip that ranges between very loud and 
very soft passages – for example, most classical symphonic music – is said to have a 
wide dynamic range.  It is also possible to speak of the dynamic range achievable in an 
audio file based on the number of bits per sample in that file.  If you open a new file to be 
recorded in a digital audio editing program and specify that you want 8 bits per sample, 
you are limiting the dynamic range of your digital recording to the dynamic range that 8 
bits afford.  The greater the bit depth, the greater the dynamic range.  The importance of a 
greater dynamic range is that lower amplitude (softer) sounds are more affected by 
quantization noise when the dynamic range is small.  That is, the lower the bit depth, the 
more the quiet parts of an audio file are distorted by quantization noise.   

Often, audio editing programs allow you to change the view to show amplitude in 
sample values, percentages, or normalized values between 0 and 1.  Figure 4.8 shows a 
16-bit wave form in the decibel and sample-value views. 
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To summarize, the dynamic range of a digital audio file is limited by the bit depth, 
greater bit depth offering greater dynamic range.  However, a particular piece of music 
may not use the full dynamic range offered by the bit depth in which it is captured.  Some 
pieces of music use a wider dynamic range than others.   

Dynamic range also comes into play in limiting the loudness of sounds that can be 
digitally recorded.  An amplitude that exceeds a digital audio file’s dynamic range will be 
clipped to the maximum level.  Clipping causes extreme distortion of the audio signal, as 
evident in Figure 4.9 in the way the sound waves are “cut off” straight across the top.  
Digital audio editing programs have a level meter that shows the amplitude level and 
indicates when the amplitude is exceeding the dynamic range.  Some also allow you to 
dynamically adjust the maximum amplitude level to avoid clipping. 

 

 

 

 
Figure 4.9.  Clipped audio, zoomed out and close up 

 
4.5.  Digital Audio Files 
4.5.1.  File Sizes 
 Section 4.3 discussed the implications of your choice of sampling rate and bit 
depth, short-changing either one diminishes the fidelity of digital audio.  If higher 
sampling rate and bit depth always give better quality sound, why not always choose the 
maximum possible?  The problem is that you pay a price in the size of your digital audio 
files.  Consider the size of a 60 minute CD that is recorded in stereo with a sampling rate 
of 44.1 KHz and a bit depth of 16 bits per sample.  How large would this file be? 
 60 minutes * 60 seconds/minute = 3,600 seconds 
 3,600 seconds * 44,100 samples/second = 158,760,000 samples 
 one 16-bit value for each of the two stereo channels = 32 bits/sample 
 32 bits/sample * 1 byte/8 bits = 4 bytes/sample   
 158,760,000 samples * 4 bytes/sample = 635,040,000 bytes ≈ 630 MB 
This is a large file.  You’d fill up your hard disk drive pretty quickly with files of this size.  
You also have to consider file size if you’re going to post your audio files on the web.  
The larger the file, the more time it takes to be downloaded to another person’s computer.  
If memory space is limited or if you’re creating audio files to be shared with others, you 
have to weigh the importance of audio quality against the size of the file. 
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Format Sampling Rate Bit Depth Uncompressed File 

Size in Bytes for One 
Minute of Audio 

Download 
Time on 
56Kb/s 
modem* 

Download 
Time on 
1.5Mb/s  
cable 
modem 

speech 
(telephone) 

8000 KHz 8 bits 480,000 1 minute 8 
seconds 

2.56 sec 

CD stereo 44.1 KHz 16 bits per 
channel 

5,292,000 (multiply by 
n for n-channel stereo) 

> 25 minutes 
(assuming 2-
channels) 

> 9 min 

DAT  
(digital 
audio tape) 

48 KHz 16 bits per 
channel 

5,760,000  (multiply by 
n for n-channel stereo) 

> 27 minutes 
(assuming 2-
channels) 

> 10 min 

DVD 96 KHz 24 bits per 
channel 

17,280,000  (multiply 
by n for n-channel 
stereo) 

> 82 minutes 
(assuming 2-
channels) 

> 30 min 

*The values for 56K modem are underestimate, since in reality you don’t get a full 56Kb/s. 
Table 4.2.  Common sampling rates and bit depths for audio files 

 
 

WORKSHEET  
Link to Worksheet on Digital Audio File Size and Date Transfer Time 

 
 
It is possible to retain audio quality to a great extent and still make your files 

smaller.  This is done through audio compression.  Compression techniques squeeze the 
data in an audio file into more concise formats so that important information is not lost.  
Many of the sound file types you are probably already familiar with use audio 
compression.  When you work with a digital sound processing programming, you can 
choose the format that you want to save your audio file in.  Common choices are listed in 
Table 4.3.  Some of these choices automatically imply that the file will be compressed.  
Others allow you to indicate whether you want to compress the file, and possibly how 
much.   

Your choice of file format should be determined by the type of sound you have 
recorded, your limits on file size, and who you expect will use the file.  Some file formats 
work only on certain types of computers or operating systems.  The differences are 
summarized in Table 4.3. 
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File Type Acronym 

For 
Originally 
Created By 

Type of 
Compression  

Platforms 

.aiff 
 
 
 
 

Audio 
Interchange 
File Format 

Apple, adopted 
later by Silicon 
Graphics 

usually not 
compressed, but 
has a compressed 
version 

Apple Macintosh 
and Silicon 
Graphics computers, 
and now also on 
Windows 

.wav 
 
 
 
 

 IBM and 
Microsoft 

supports a 
number of 
different 
compression 
formats 

primarily for 
Windows, but can 
be run on in other 
systems 

.au 
and .snd 
 
 
 
 

Also called 
mu-law or 
Sun mu-law 
format 

Sun and NeXT mu-law encoding 
compresses the 
file at a ratio of 
2:1; slow 
decompression 

Sun, NeXT, Unix or 
Linux operating 
system 

.ra or .rm 
 
 
 
 

Real Audio Real  very high degree 
of compression; 
files can be 
streamed; sound 
quality poorer 
than .mp3 

cross-platform 

.mp3 MPEG audio 
layer 3 

Moving 
Pictures 
Experts Group 

good 
compression rate 
with high quality 
sound 

cross-platform 

.swa 
 
 
 
 

Shockwave Macromedia uses same 
compression as 
mp3 

cross- platform 

.asf advanced 
streaming 
format 

Windows proprietary 
compression 
algorithm 

Primarily used with 
Windows Media 
Player 

Table 4.3.  Common Digital Audio File Formats 
 

4.6.  Audio Transforms and Filters 
It is often convenient to change the representation of data in order to be able to 

separate out what is important and what is not important, or what you want to change and 
what you do not want to change.  This is the case with digital audio data, where 
transforming the digital data from the time domain to the frequency domain makes it 
possible to handle different frequencies differently for the purposes of filtering and 
compression.  Representing audio data in the digital domain entails recording amplitude 
values (the range) at discrete moments in time (the domain) as in Figure 4.10.  

In the frequency domain, on the other hand, frequency values run along the x axis 
while amplitudes remain on the y axis.  Accordingly, Figure 4.11 displays the amplitude 
of frequency component exists in a given audio clip.  This clip has dominant frequency 
components of about 250 Hz, 2000 Hz, and 4800 Hz. 
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 Spectral analysis provides another time-based way of viewing frequency 
information.  In the spectral view, time is on the x-axis and frequency is on the y-axis.  
The amplitude of a each frequency at a moment in time is given by the color of that band 
across as you move horizontally.  Bright colors correspond to higher amplitudes.  In 
Figure 4.12, the highest amplitude frequencies are, as before, at approximately 250 Hz, 
2000 Hz, and 4800 Hz.  The amplitude remains constant through the interval shown.   

Filters in audio editing programs use transforms (e.g., the Fast Fourier Transform, 
or FFT) to decompose a sound file into its frequency components, allowing the user to 
filter out frequencies in certain bands.  An equalizer allows you to boost or reduce the 
amplitude in frequency bands.  A graphic equalizer displays a graphical view of slider 
bars, each corresponding to a band of frequencies.  You can move the sliders up and 
down depending on whether you want to make the frequency louder or softer.  
Specialized filters are also available in audio editing programs, including the de-esser, 
low pass, and high pass filter.  A de-esser removes the hissing s sound that results when a 
person speaks or sings too close to a microphone.  The low pass filter removes high 
frequencies above a given threshold, allowing low frequencies to pass through.  The high 
pass filter does the opposite. 

 
 

 
Figure 4.10.  Digital audio in time domain (from  the Waveform Edit View of Adobe Audition 1.0) 
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Figure 4.11.  Digital audio in frequency domain 

(from the Frequency Analysis of Adobe Audition 1.0) 
 

 
 
 
 
 
 

 

 
Figure 4.12.  Spectral view of sound wave shown in Figure 4.10 

(from Spectral View of Adobe Audition 1.0) 
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4.7.  MIDI 
 So far in this chapter, we have been describing digital audio.  You have seen how 
digital audio is captured through samples of sound waves.  Digital audio files consist of 
long sequences of samples, each of which is represented in a fixed number of bits.  The 
digital-to-audio converter (DAC) attached to your computer’s or stereo system’s speakers 
converts these digital samples to voltages that tell the speakers how to vibrate and thus 
reproduce the original sound.   
 There is another way to store information about music, called the MIDI format.  
MIDI stands for musical instrument digital interface.  MIDI defines a standard format in 
which electronic digital musical instruments can communicate with computers.  A MIDI 
keyboard is an example of such a musical instrument.  It looks like a small piano, but the 
difference is that instead of being a mechanical device that creates a sound by the striking 
of padded hammers on strings, it is an electronic device that synthesizes sound in digital 
form using its own internal microprocessor (i.e., computer).   
 MIDI music is recorded in a form completely different from the format of digital 
audio.  While a piece of data in a digital audio file represents the amplitude of a sound 
wave at some point in time, a piece of data in a MIDI file represents the instrument being 
played, the note being played, and the duration of the note.  As a piece of music is played 
into a MIDI instrument, the instrument’s internal computer records the music in the MIDI 
format.  Then the music can be passed to your desktop or laptop computer by means of a 
MIDI cable connection  

MIDI files are compact and easy to work with.  Once you get your MIDI file onto 
your computer, you can work with it in a MIDI music processing program, easily 
changing the key, tempo, or instrument being played.   

If MIDI files are so compact and easy to work with, you may wonder why we 
don’t use the MIDI format for all audio files.  The reason is that MIDI works for 
simulating or reproducing the sound of musical instruments, but it doesn’t work for 
recording real-time audio events.  Also, MIDI music is essentially instrumental music.  
(It’s true that the human voice can be synthesized, but we’d have to be able to synthesize 
every possible word a human could say.)  Sometimes we want to record exactly what our 
ears hear, and for this we need digital audio recording.   

 
 

 
Link to on-line demo on Digital Audio Fundamentals
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